Statics - TAM 210 \& TAM 211

Spring 2017

Course websites

MAIN PAGE

https://courses.engr.illinois.edu/tam210/index.html

Discussion group activity - 8\% of grade

- Work in groups of 3-4 students
- Goals:
- Gain experience in team-work
- Apply engineering concepts learned in lecture to real-world problems or handson activities
- Be prompt: if you are more than 5 minutes late, you will not be allowed to complete the activity
- You need to attend the discussion in which you are registered, otherwise, your assignment will not be graded

- Matlab clinic

- Jan 23-27
- MEL 1001
- Available slots marked in green
- Course website has a Matlab help document (see schedule page)

	Monday	Tuesday	Wednesday	Thursday	Friday
	$1 / 23$	$1 / 24$	$1 / 25$	$1 / 26$	$1 / 27$
$9: 00 \mathrm{AM}$					
$10: 00 \mathrm{AM}$					
$11: 00 \mathrm{AM}$					
$12: 00 \mathrm{PM}$					
$1: 00 \mathrm{PM}$					
$2: 00 \mathrm{PM}$					
$3: 00 \mathrm{PM}$					
$4: 00 \mathrm{PM}$					
$5: 00 \mathrm{PM}$					

Forces are vectors

- Vectors have direction and magnitude
- We will use the following operations with forces
- Adding
- Subtracting
- Calculating the resultant
- Taking the dot product
- Taking the cross product with moment arm vectors

Why use Matlab to do these operations?

- It will make our life easier!
- Avoid rounding errors
- 1\% rule for Prairie Learn and MasteringEngineering
- Faster than doing the calculations by hand, especially useful for timed quizzes and exams

What is MATLAB

- High level language for technical computing
- Stands for MATrix LABoratory
- Everything is a matrix - easy to do linear algebra
http:/ /www.mathworks.com/help/

MATLAB Desktop

Workspace

- Matlab remembers old commands
- And variables as well
- Each Function maintains its own scope
- The keyword clear removes all variables from workspace
- The keyword who lists the variables

Matrices \& Vectors

- All (almost) entities in MATLAB are matrices
- Easy to define:
- Order of Matrix -
- $\mathrm{m}=$ no. of rows, $\mathrm{n}=$ no. of columns
- Use ',' or "' to separate row elements -- use ';' to separate rows

$$
\begin{array}{cc}
\gg A & A
\end{array}=\left[\begin{array}{ccc}
16 & 3 ; & 5
\end{array}\right]
$$

$$
\begin{gathered}
\left.>A=\begin{array}{ccc}
-5 & 1 & -8
\end{array}\right] \\
A=\begin{array}{ccc}
-5 & 1 & -8
\end{array}
\end{gathered}
$$

Defining vectors in Matlab

$$
>A=A=\left[\begin{array}{lll}
-5 & 1 & -8
\end{array}\right]
$$

- A \rightarrow variable name
- How many rows are in A?
- How many columns are in A?
- $\mathrm{A}(1,1)=-5$

$$
A(1,2)=1
$$

$$
\mathrm{A}(1,3)=? ?
$$

- How do we edit a vector?

Adding vectors in Matlab

$>A=\left[\begin{array}{lll}-5 & 1 & -8\end{array}\right]$

$$
>B=\left[\begin{array}{lll}
6 & -3 & 4
\end{array}\right]
$$

- To add
- Define vector 1
- Define vector 2
- $\mathrm{C}=\mathrm{A}+\mathrm{B} ; \mathrm{C}=$??? (always define your solution as a variable, in case you need it in a later step)
- To subtract....

Dot and cross product, determinant

- det (D) : determinant of a square matrix
- $\operatorname{dot}(\mathrm{A}, \mathrm{B})$: dot product of two vectors
- cross (A, B) : cross product of two vectors

Useful trig functions

- Trigonometric and their inverse
- $\cos (x)$
- $\sin (x)$
- $\tan (x)$
- $\cot (x)$
- $\csc (\mathrm{x})$
- $\sec (x)$

$$
\begin{aligned}
& \operatorname{acos}(\mathrm{x}) \\
& \operatorname{asin}(\mathrm{x}) \\
& \operatorname{atan}(\mathrm{x}) \\
& \operatorname{acot}(\mathrm{x}) \\
& \operatorname{acsc}(\mathrm{x}) \\
& \operatorname{asec}(\mathrm{x}) \\
& \operatorname{atan} 2(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Note that all of these are in radians

Cosd $=\operatorname{cosine}(\#$ in degrees $)$

OR

Convert from radians to degrees
rad2deg
Deg2rad
Do the math itself, pi is predefined in Matlab as "pi"

